SMT in reverse engineering, for dummies

Carl Svensson September 4, 2016

SEC-T 2016

- · Carl Svensson, 25
- $\cdot\,$ MSc in Computer Science, KTH
- · IT Security consultant, Bitsec AB
- · CTF-player, HackingForSoju
- · 🖂 calle.svensson@zeta-two.com
- 🔰 @zetatwo
- 🔇 https://zeta-two.com

- · Take stuff, e.g. software, apart
- \cdot Understand how it works
- · Many possible goals
 - · How can I reach a specific state?

- $\cdot\,$ Satisfiability modulo theories, SMT
- \cdot A bunch of variables
- · A bunch of theories
 - \cdot Theory = A bunch of rules
- $\cdot\,$ A bunch of formulas
- $\cdot\,$ Can we find values for all values s.t. all formulas are satisifed?

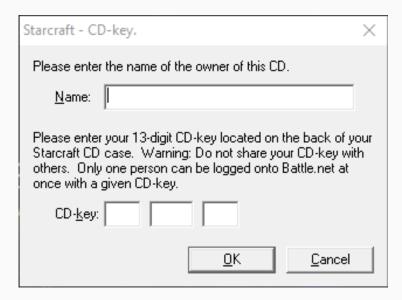
x + 13 = 37

x + y + 13 = 37 - z $x - 2 \cdot y + 10 = 10 \cdot z$ $4 \cdot x - z + 13 = 37 + y$

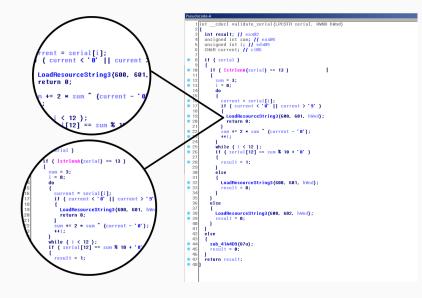
$$\begin{split} &|D(T,\mathbf{z},n,b)| &\leq 2\\ & \gamma(\operatorname{Grav}(n,b)) &\leq 2\\ & \gamma(\operatorname{Grav}(n,b)) &\leq 2\\ & \gamma(\operatorname{Grav}(n,b)) &\leq 2\\ & \varphi(\operatorname{Grav}(n,b)) &\leq 2\\ & \varphi$$
 $\begin{array}{c} |X \cup Y| = |X| + |Y| - |X \cap Y| & \underset{k \in W}{\text{ for } k \in \left\{\frac{X}{kk}\right\}} = \frac{d}{12\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi} e^{-\frac{X^2}{L}} & \underset{k \in W}{\text{ for } k} = \frac{d}{2\pi$
$$\begin{split} & \int_{\mathbb{R}^{N}} (X \to X \wedge M) & \lim_{k \to \infty} (k \in \mathbb{T} \{M_{k}\} - \lfloor \frac{1}{2k} \rfloor - \lfloor \frac$$

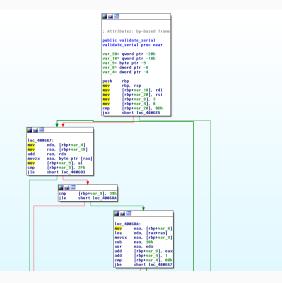
- · Can we automate? Yes!
- · Microsoft Research
- · Z3 Theorem Prover
 - · General purpose
 - · Own language
 - · Bindings for several languages
 - · Open source & cross platform

THROWBACK THURSDAY: STARCRAFT

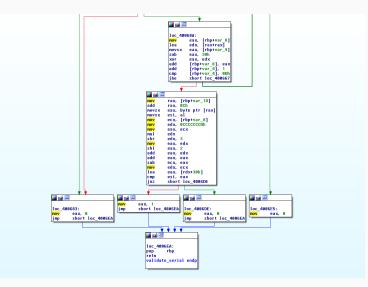

THROWBACK THURSDAY: STARCRAFT

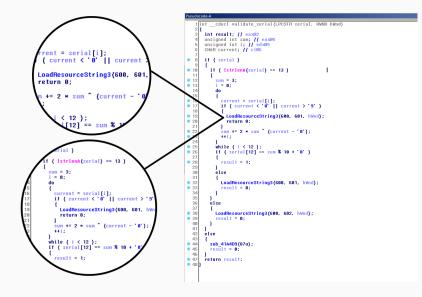
- · Commercial software
- · Released in 1998
 - · Simple protections
 - $\cdot\,$ Good starting point
- · Requires a serial key
- · Can we create our own?


GETTING TO THE CORE: INSTALLER



DirectX is built into Windows NT. 507 A DLL required to install DirectX is missing or corrupt. DirectX installation aborted. 600 Invalid CD-Key 601 You entered an invalid CD-Key. Please check to ensure that you have entered the CD-Key as it appears on the CD-case. 602 You entered an invalid CD-Key. The CD-Key you entered was too short. Please check to ensure that you have entered all 13 digits of your CD-Key 603 Invalid Name 604 You must enter a name to continue with installation. 605 Please enter a name that is less than 127 characters long. 606 Please enter a name that does not contain guotes (").


GETTING TO THE CORE: DECOMPILATION


GETTING TO THE CORE: CALL GRAPH

GETTING TO THE CORE: CALL GRAPH

GETTING TO THE CORE: DECOMPILATION

Z3: FORMULATING FORMULAS

```
solve.py
from z3 import *
s = Solver()
serial = [BitVec('c%d' % i, 32) for i in range(13)]
for c in serial:
partials = [3]
for i in range(len(serial)-1):
    p = BitVec('p%d' % i, 32)
    s.add(p == partials[-1] + ((2*partials[-1]) ^ (serial[i])))
```


- \cdot "python framework for analyzing binaries"
- \cdot "both static and dynamic symbolic (concolic)"
- · Computer Security Lab at UC Santa Barbara
- · Uses Z3 internally

ANGR MANAGEMENT: EXTRACTING THE CODE

		23 +++v4;
<	> validate.c ×	24 }
		25 while (v4 < 12);
1	<pre>intcdecl validate_serial(LPCSTR serial, HWND hWnd)</pre>	26 if (serial[12] == v3 % 10 + '0')
2		27
3	int result; // eax@2	28 result = 1;
4		29
5	unsigned int v4; // edx@5	30 else
6	CHAR v5; // cl@6	31 {
7		32 LoadResourceString3(600, 601, hWnd);
8	if (serial)	<pre>33 result = 0;</pre>
9		34 }
10	<pre>if (lstrlenA(serial) == 13)</pre>	+ J 35 }
11		,
12	v3 = 3;	
13	v4 = 0;	37 {
14		36 LoadResourceString3(600, 602, hWnd);
15		39 result = 0;
16	v5 = serial[v4];	40 }
17	if (v5 < '0' // v5 > '9')	41 }
18		42 else
19	<pre>LoadResourceString3(600, 601, hWnd);</pre>	43 {
20		44 sub_41A4D9(0x57u);
20		45 result = 0;
21		46 }
- 22	v3 += 2 * v3 ^ (v5 - '0');	47 return result;
23	++v4;	48 }
24		

ANGR MANAGEMENT: MINIMIZING THE CODE

```
validate_clean.c
                                                            printf("Serial: %s\nValid: %d\n", serial, validate serial(serial, strlen(serial)));
```

ANGR MANAGEMENT: WRITING THE EXPLORER

```
solve angr.py
import angr
def main():
    p = angr.Project('./validator2', load_options={"auto_load_libs": False})
    pg = p.factory.path_group()
    pg.explore(find=(0x4006d7,), avoid=(0x400683,0x4006de,0x4006e5,))
    found = pg.found[0]
    return found.state.posix.dumps(0).split('\0')[0]
if name == ' main ':
```

THANKS FOR LISTENING!